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Synopsis

The flux of recoil atoms in atomic collision cascades induced by an ion beam or another source 
of energetic particles in a material is known to approach isotropy at kinetic energies far below 
the beam energy. A variety of irradiation effects can be explained satisfactorily on the basis of 
an isotropic particle flux, but significant deviations from this simple behavior are known to exist. 
While numerous examples have been studied by numerical simulation of cascade processes, the 
systematics is, by and large, unknown. The present study aims at general scaling properties and 
estimates of the magnitude of moderate deviations from isotropy and their spatial dependence 
for a wide range of beam and material parameters. Anisotropies introduced by crystal structure 
are ignored.

Although it is well established that cascade anisotropy is related to the momentum of beam 
particles, previous attempts to quantify this relation have failed. We have found that there are 
two leading correction terms to the isotropic particle flux, a well-known term centered around 
the beam direction as a symmetry axis and a new term proportional to the gradient of the 
deposited-energy density. As a general rule the two contributions are either both significant 
or both negligible. Specific situations in which the gradient term dominates are, however, of 
considerable interest in applications. The parameters which characterize the anisotropy of collision 
cascades also determine the deposition of momentum, but the connection is less straightforward 
than asserted hitherto.

General principles are first illustrated on the specific case of elastic-collision cascades under 
self-bombardment which contains the essentials. Thereafter several generalizations are made, 
including atomic binding forces and inelasticity as well as allowance for multicomponent materials. 
Application areas in mixing and sputtering are outlined.
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1 Introduction
Energetic particles like ions, neutrons, and electrons may induce cascades of recoil 
atoms when interacting with matter. Such atomic collision cascades lead to a 
variety of observable radiation effects in solid or liquid materials such as defect 
formation and sputtering, disordering and mixing, and phase transitions. Collision 
cascades may also influence electronic effects such as ionization and electron or 
photon emission in both gaseous and condensed matter.

The number of atoms participating in a collision cascade is dependent primarily 
on the available energy, where key parameters are the binding energy of a recoiling 
atom to its original site, the cross section for subthreshold (non-recoil) scattering 
events, and the rate of electronic excitation (Lindhard et al., 1963a; Sigmund, 
1969a, 1972).

Except for effects caused by regular crystal structure, the overall velocity distri
bution of recoiling atoms is close to isotropic if the number of participating atoms 
is large, i.e., if the initial energy is high compared to the binding energy. Direc
tional memory is lost rapidly since atoms recoil most frequently at large angles 
from the initial direction of a colliding particle. Some degree of preferred motion 
must yet prevail because of conservation of the momentum of the initiating particle 
(Sanders, 1968).

The approximation of an isotropic recoil cascade has also been imposed on 
the local velocity distribution of moving atoms in limited regions in space as a 
consequence of heavy-ion bombardment (Thompson, 1968), where its validity is 
not obvious. A detailed study provided support in the asymptotic limit, i.e., for 
recoil energies far below the initial beam energy (Sigmund, 1969b), but only very 
qualitative information was provided on where the approximation breaks down. 
Even in the asymptotic limit there can be little doubt that in the outer regions of 
a collision cascade the motion must be preferentially directed outward.

Several attempts have been made to estimate the dependence of local anisotropy 
in a collision cascade on the masses of the participating atoms as well as primary and 
recoil energy. These attempts were based on the recognition that both the overall 
and the local anisotropy in a cascade must be related to momentum conservation 
(Roosendaal et al., 1980, 1982; Sigmund, 1981).

Momentum-induced anisotropy in collision cascades came up again in connec
tion with attempts to understand pronounced preferential sputtering effects from 
isotopic mixtures that were predicted by molecular-dynamics computer simulations 
(Shapiro et al., 1985, 1988). While an analysis by two of us did not confirm 
the assertion that momentum anisotropy was a factor of major importance in this 
context (Sigmund &; Sckerl, 1993), several problems had been left open in previ
ous studies of momentum anisotropy. There were ambiguities attached to the very 
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definition of the term ‘deposited momentum’, in particular at the low-energy end of 
the cascade (Urbassek & VlCANEK, 1992). Moreover, the accurate connection be
tween deposited momentum and particle flux had never been established. One of us 
had published an approximate relation between particle flux and deposited momen
tum long ago in a review without documentation (Sigmund, 1981), and relations 
have appeared in the literature that are either misleading or wrong (Roosendaal 
ET AL., 1980, 1982). Moreover, spurious divergencies were found, the origin of 
which has been discussed only recently (Sckerl et al., 1995; Glazov, 1995), 
even though it has been clear for some time that there is no real problem if more 
terms are taken into account (Roosendaal et al., 1982). Altogether, published 
information on either momentum deposition profiles or angular distributions of 
particle fluxes is sparse to say the least.

In view of this state of affairs we found it desirable to analyse the whole complex 
of problems in some detail. We define key parameters from first principles and 
consider their mutual relationships to some degree of generality. In that respect, 
this work may be considered as an extension of a previous discussion of scalar 
quantities (Huang et al., 1985).

The paper has been organized such that the discussion focuses initially on self
bombardment of a single-component material of infinite extension. Extension to 
more general bombardment conditions is discussed subsequently while results ap
plying to a multicomponent material have been collected in appendix A. Explicit 
analytic results will be presented for the case where scattering is assumed elastic 
and governed by a power-law cross section. Arguments will be given which allow 
generalization to a wider variety of scattering laws, and explicit estimates will be 
given of the effects of electronic stopping and lattice binding forces. Results of this 
project were reported at a recent conference (Sckerl et al., 1995).

2 Fundamentals

2.1 Particle Density and Flux Density

Consider some source of radiation, typically an ion beam or a source of fast neu
trons, which generates energetic particles via collision cascades in a polyatomic 
medium, the composition of which may be characterized by a set of density pro
files 7Vj(r), where j = 1, 2,... n in an n-atomic medium and Nj(r)d?r is the mean 
number of j-atoms in a volume element d3r. For high irradiation fluences this 
profile may depend on time. If so, Nj(r) is meant to denote the profile seen by 
an individual incident beam particle. As a result of the interaction between one 
beam particle and the material a cascade of atomic collisions develops which may 
be characterized by a density #j(w,r,t) of moving particles in phase space such 



MfM 44:3 7

that gj(w,r,t)d3wd3r is the mean number of j-atoms moving in volume elements 
(r,d3r) and (w,d3w) in real and velocity space, respectively, at time t. The aver
age is taken over a large number of primary impacts with identical initial conditions 
as far as measurable beam and target parameters are concerned.

For the purpose of the present study the central quantity is the time-integrated 
flux density,

POO

Gj(w,r) = w dtgj(w,r,t) (1)
Jo

which is known from transport theory to play the role of a Green function from 
which several other statistical distributions may be derived (Duderstadt &; MAR
TIN, 1979).

It will frequently be necessary to include a specification of the initiating particle 
in the definition of the density. Then the notation £ij(v;w,r,t) implies that the 
collision cascade has been initiated by an «-particle impinging with a velocity v in 
r = 0 at t = 0. Here an «-particle may be either an external particle (« = 0) or an 
energetic recoil atom of the material (« = 1,.. .n). Similar extensions apply to the 
flux density and other statistical distributions to be introduced in the following.

The essential arguments to be presented in the following apply equally well to 
self-bombardment of a monoatomic medium as to arbitrary bombardment of an 
arbitrary medium, but discussing the former allows for a simpler notation and, 
hence, a more transparent presentation. Therefore the bulk of the paper empha
sizes self-bombardment of a monoatomic medium. More general results have been 
collected in section 6.1 on pp. 26 for non-selfbombardment and in appendix A 
for polyatomic media. Reference to these sections will be made where appropriate. 
This eliminates the need for atom labels here. We may then operate with a particle 
density g(w,r,t) and a flux density G(w,r).

2.2 Freezing Density, Deposited Energy, and Deposited Mo
mentum

Consider now some energy U below which all motion of beam and recoil particles 
is assumed to be frozen in. We introduce the freezing density F(w,r,f7) which 
reflects the distribution in real and velocity space of a cascade after all participating 
atoms have slowed down below U. Thus, F(w, r, U)d3wd3r is the mean number of 
atoms per incident particle emerging from collisions in a volume element (r,d3r) 
at velocities in an interval (w,d3w) with

W = Mw^/2 < U, (2)

when cascade processes are recorded only for particles with energies above U. Here, 
M denotes the mass of the particles involved.
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Except for the name the freezing density was introduced into this field by 
Sanders (1968). It makes possible a precise definition of the useful concepts 
of deposited energy and momentum,

Fp(r,C/) = f d3wW F(w,r,U)
Jw<u

(3) 
FP(r,U) = f d3w MwF(w,r,U).

Jw<u

For an elastic-collision cascade1, the integral over all space of these distributions 
must equal the initial energy and momentum of the beam particle, respectively, 
irrespective of the choice of U.

1By definition, the sum of the kinetic energies of all particles in motion is constant in an 
elastic-collision cascade. The effect of two major sources of inelasticity, electronic stopping of 
primary and target recoil atoms, and binding of target atoms, will be studied in sections 6.2 - 6.4.

In addition to densities of deposited energy and momentum one may also con
sider the associated current densities or fluxes. Conservation laws satisfied by these 
quantities have the form of continuity equations which have been collected in ap
pendix B.

2.3 Connections

The leading term in the standard expression for the particle flux in the limit of 
high ion energy is approximately proportional to the density of deposited energy 
(Sigmund, 1969b). It is also known that corrections to this term depend on the 
deposited momentum (Sanders, 1968; Sigmund, 1981). Before discussing those 
important connections we derive the inverse relationships which, unlike the former, 
are exact since the flux density is a Green function.

In the following we shall assume a random distribution of scattering centers in 
the material. The connection between the freezing density and the particle density 
is found most conveniently by a physical argument. Indeed, write

F(w, r, U) = N(r) [ d^w' [ dtw1 g(w',r,t) f da(w'-,v',v")
Jw>u Jo J

x — w) + 0(v" — w)). (TV < U) (4)

Here, da(v-, v', v") is the differential cross section for scattering of an atom with a 
velocity v hitting an atom at rest, v' and v" denoting the respective velocities after 
collision, and £(...) is the Dirac function. By definition, d3w'g(w', r, t) represents 
the mean number of particles per volume moving with velocity (w/,d3w/) at time 
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t, and N{r)w'dtdaÇw'•, v', v") is the probability for a collision with the outcome 
(■v',d3v'), (v" ,d3v"). The contents of the parentheses represent the probability 
density for either the colliding or the recoiling atom to have a final velocity around 
w.

We identify the flux density (1) in eq. (4) and insert into eqs. (3) with the result

FD(r,L7)
w>u

Fp(r,U)

Mu' cos (j)'da
E'<U

where (/)' denotes the scattering angle in the laboratory system. A corresponding 
expression holds for the second integral.

It is common to replace velocities by energy and angular variables

f E"da
E"<U

[ Mv'da + [
E'<U Je

where E' = Mv'2/2 and E" = Mv"2/2 represent the energies of the scattered 
atom and the recoil, respectively.

Differential cross sections most often exhibit azimuthal symmetry around the 
direction of the colliding atom. If so, the first integral in the parentheses of eq. (6) 
reduces to

[ Mv' da(w\v' = — f
Je'<u w Je

G(w,r)d3w = G(W, Q, rjdWffa (7)

where JI = w/w is a unit vector in the direction of the velocity w. Then eqs. (5) 
and (6) reduce to

Fd

Fp

N f dWG(W) [ f E'da + 
Jw>U \Je'<U

(8)
N f dWH(W) ( [

Jw>u \Je

where

G(W)

H(W) / (9)

The spatial variable r has been suppressed for clarity and </>" denotes the recoil 
angle in the laboratory system.
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Eqs. (8) represent rigorous expressions for the densities of deposited energy and 
momentum in terms of the flux density G(W, Q). An approximate expression for 
the inverse relationship - which is of much greater practical importance - will be 
found in section 5.1 (p. 22).

2.4 Elastic Scattering

Now assume elastic collisions. For equal-mass colliding particles we may write

E' = E--T;

Mv' cos </>' = — (E-T);

E" = T

Mv" cos (/>" = — T 
w (10)

Jt<u

where T is the energy transfer in conventional notation. Then eqs. (8) reduce to

fd

Fp

= N
Jw>u

= NJ
Jw>u

dW G(W) (S'(W, E) + S"(W, E)} 

dW -ET(W) (s'(W, U) + S"(W,

(11)

(12)

where

S'(W,U) ■= f (W -T)da(W,T}
Jw-T<U

S"(W,W) := I Tda(W,T)
(13)

and da(W,T) is the differential cross section for energy transfer (T, dT) from an 
atom with kinetic energy W to an atom at rest. With this, the same transport 
cross sections occur in both deposited energy and deposited momentum.

2.5 Inelastic Processes

Scattering processes between atoms are more or less inelastic because energy is 
spent in electronic excitation and ionization. This is known to affect the energy 
balance (Lindhard et al., 1963a); a similar effect on momentum balance must 
be expected. We need to distinguish between the influence of inelastic losses on 
particle flux, deposited energy and momentum on the one hand, and the influence 
of such losses on the relations connecting them. Here we are concerned only about 
the latter aspect. The effect of electronic stopping on the quantities themselves is 
going to be considered in sections 6.2 and 6.4.
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We shall employ a scheme introduced by Lindhard et al. ( 1963a,b) in which 
electronic interactions are treated as occurring between two separate systems, elec
trons and nuclei. This scheme does not properly account for inner-shell processes 
and other forms of strong coupling but is well suited in cases where electronic 
processes are expected to cause minor perturbations. Temporarily we introduce 
separate flux densities G^ and for atoms and electrons as well as separate 
expressions Fp> and F<p for energy and momentum deposited in atomic 
and electronic motion, respectively. Going through the above arguments one ar
rives at an expression for F^ containing two terms, one identical with eq. (11), 
G(W) being replaced by G^^(W). The second contribution is a coupling term of 
the form

AF^n) = N f dWG(e\W) [ Tdaen(W,T)
J Jt<u

where daen(W,T) is the differential cross section for scattering of an electron of 
energy W on an atom. Similarly the momentum term receives an addition of the 
form

= N [dWH{e\W) f V2MT coscf)11 daen(W,T).
J Jt<u

In the conventional picture (Lindhard et al., 1963a,b) any transfer of energy 
from electronic to nuclear motion is ignored because of the large difference in mass 
between nuclei and electrons. To the extent that this picture is valid it should also 
apply to deposited momentum because the total amount of momentum contained 
in electronic motion is small. On the other hand, numerous processes have been 
identified, in particular in insulators, which efficiently transfer energy from elec
tronic to nuclear motion (Johnson & Schou, 1993; Reimann, 1993). Whenever 
one of those processes is active the above coupling term between energy deposited 
in atomic motion and the electron flux needs to be taken into account.

Equations expressing the energy and momentum deposited in electronic motion 
may be established by interchanging labels ‘n’ and ‘e’. Here the coupling term will 
in general not be negligible.

3 Transport Equations
In the following we shall assume the density of moving atoms to be low enough 
that the neglect of collisions between moving atoms be justified. Collisions are 
formally taken as binary, but this does not preclude taking into account distant 
simultaneous interactions with several particles as long as they may be described 
within first-order perturbation theory.

On the basis of the above assumptions one arrives at linear transport equations 
which are wellknown (Sigmund, 1972, 1991). These equations may be written in 
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forward or backward form. For a homogeneous stopping medium the two forms are 
equivalent. They differ in the roles played by the instantaneous velocity variable 
w and the initial velocity v.

3.1 Forward and Backward Equations

The particle density g(w,r,t) is a convenient starting point. The forward Boltz
mann equation reads

+ w ‘ W(w) — N J d3w' { d3w" |w'g(w')K{w'-,w,w")

+w' g(w')K(w' ,w" ,w) — wg(w)K{w-w' (14)

where 7<(w; w', w")d3w'd3w" = dcr(w, w', w"). Eq. (14) follows readily from a 
comparison of g(w,r,t -I- öt) with <?(w,r,£) since Nwda is the collision rate per 
unit time. The time and space variables have been suppressed for clarity. The 
particle density N in the medium will henceforth be taken constant.

The corresponding equation for the particle flux is found by integration over 
time with the initial condition g(w,r,0) = <5(r)<5(w — v),

N j d3w' j d3w"^G(w)K(w,w',w") — G(w')K(w'-,w,w")

—G(w,)A'(w/; w/z, w) | + Q • VG(w) = <5(w — r)5(r). (15)

The backward equation for the particle density reads

+ v ■ Vg(y) = Nv j dcj(v; v', v"){ø(v') + g(v") - g(v) J,

where the variables w,r, and t all have been suppressed. Several ways to derive 
these equations have been outlined in the literature (Lindhard ET AL., 1963a, 
1971; Sigmund, 1969b, 1991) but will not be reproduced here. Integration over 
time with the above initial condition yields the flux equation

N f da(v-,v',v''){g(v) — G(v') — G(v'')} + e ■ VGÇv) = ô(v — wjôÇr) (16) 

where e = v/v is a unit vector in the direction of the initial velocity v.
The linearity of eqs. (15) and (16) and the occurrence of the Dirac functions on 

the right-hand side make it formally clear that the particle flux is a Green function. 
The velocity variable w is an active variable in the forward equation but mute in 
the backward equation. Therefore the backward equation allows integration over w 
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with an arbitrary weight function and, hence, derivation of a transport equation for 
quantities that can be derived from the particle flux. Consequently such equations 
are identical with eq. (16) except for the inhomogeneity on the right-hand side. 
This holds in particular for the transport equations obeyed by deposited energy 
and momentum.

3.2 Planar Geometry

The assumption of an infinite random scattering medium implies isotropy. There
fore the particle flux can depend only on two rather than three independent di
rectional variables. We may fix one directional variable according to convenience 
without loss of generality. Although the ‘natural’ directional variable is the beam 
direction as expressed by v, for many purposes in ion beam physics it is more 
convenient to keep the direction of the spatial variable r fixed. For a semi-infinite 
target with a plane surface the a>axis is chosen along the inward surface normal. 
For an infinite medium the choice is arbitrary. In either case the particle flux and 
all derived quantities will be integrated over the lateral coordinates (y,z). Then 
eqs. (15) and (16) reduce to

N y d3w' y d3w" {g(w)K(w;w\w'') — G(w')K(w':,w,w'')

—G(w')K(w'-, w", w)) + cos# W = <5(w — v)<5(x) (17) 
J ox

and

N y dcr(v, v', v")|g(v) — G(v'} — <7(v")} + cos ® = ~ w)ô(x) (18)

where 0 and 0 are the angles between the instantaneous velocity w and the initial 
velocity v and the x axis, respectively. These two relations form the starting point 
for solutions of the transport problem.

3.3 Deposited Energy and Momentum

Deposited energy Fp(v,r,F) and momentum Fp(v,r,U) obey backward trans
port equations. These equations are identical with the one satisfied by the flux 
density eq. (18) except for the inhomogeneity on the right-hand side. For planar 
geometry and E > U we find

da(v;t>',v"){PD(tO - Fd(v') - Fp(t/')} + cosø£fd(u) = 0 (19)
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/
n

da(v,v',v"^FPÇv) - FP(v') - FP(v")} + cosØ^FP(v) = O (20)

where, for convenience of notation, the inhomogeneities on the right-hand side have 
been replaced by normalization conditions

/ dxFp)(v, x, U)
J — oo

rOO

/ dxFp(v, x, U)
•/ —OO

E for E < U

Mv for E < U.

(21)

(22)

4 Moment Equations

4.1 General

For an infinite medium a convenient way to solve transport equations goes over 
spatial moments. We follow the procedure applied previously (Sanders, 1968; 
Sigmund, 1969b; Winterbon et al., 1970) and take the backward equation (18) 
as a starting point. Expand the flux in terms of the angular variables,

G(E,e; W,Q,a?) = EE V/4tt(2£ + 1) v/4tf(2£/ + 1)

x G^.ptfl, (F; W, x)Y(ß (e)Y^, (fi) 

where energy and directional variables have been introduced just as in eq. (7) on 
page 9, and WM(e) are spherical harmonics in one of several standard notations. 
The numerical factors have been chosen such that conventional notation is recovered 
for — 0. Spatial moments are introduced according to

7*00

GzzhxCE;«7) = / dxxnGe,Kt.,p,(E-,W,x).
J —oo

With this the backward equation reduces to the following multi-dimensional set of 
equations for moments,

(It + 1 )7V I da(E-, E’,E") {gJ”’.,, (£; IV) - P((cos^)GS"’(S'; IV) 

-PAcos^")«?^’.,,IV)} = ôn06lt.ô^ ±S(E - IV)

+ n (E’+ W + iP-^GfciE,.'"o) (23)

where the Pt are Legendre polynomials. This system of equations can be solved 
recurrently starting from n = 0.
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4.2 Elastic Scattering and Power Cross Section

The case of power-law elastic scattering (Lindhard et al., 1963a, 1968) is a useful 
reference since it allows finding solutions with a considerable amount of rigor. The 
cross section is written in the form

(24)

where 7^ = -I- MjY and

2mm

(25)

(26)-I- n

with G'(s) = /0°° du exp(—su)G(u) denoting the Laplace transform and

(27)

For arbitrary masses of collision partners we have

cos (ft = (1 — i)1/2 + QT^(1 — ^) 1/2 ! (28)

aij

daij(E,T) = CijE-mT-1-mdT-, 0<T<yijE,

Here the Zi and Mi are atomic numbers and masses, respectively, and screening 
radii for interaction between i and j atoms. The quantity m is an exponent in 
the interval 0 < m < 1 and Xm a dimensionless quantity depending on m and 
determined by the screening function. It has been shown (Lindhard et al., 1968) 
that this cross section approximates the scattering law for a power-law interaction 
potential oc R-1/"1, R being the internuclear distance between two interacting 
atoms. It is also known that screened-Coulomb-type interatomic potentials behave 
power-like over limited ranges of the internuclear distance. An alternative version 
of eq. (25) applying to other repulsive potentials was proposed by Andersen & 
Sigmund (1974).

The common strategy of solving equations like eq. (23) (Robinson, 1965; Sig
mund, 1969c, 1972) is to switch to logarithmic variables u = log(E/Hr) and to 
take the Laplace transform of the moment equation (23). For the monoatomic case 
where 7^ = 1 this leads to

|1 - F^(cosø')(l - ty - F/(cos^")F j.I/(s) = dtt-1^
Jo

- 2m) + 7(^+l)2-M2G^A;r„,(S - 2m))

with aij = {Mi — Mj)/2Mi. Eq. (26) represents a system of algebraic equations 
which can be solved rigorously up to any order n.
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4.3 High-Energy Expansion

The solutions in energy space of integral equations of the above type may be written 
in the form of asymptotic series (Sigmund, 1969c, 1972),

a

where the a form a monotonically decreasing sequence of real but in general not 
integer numbers. In Laplace space this reads

52 Aa/(s - «)•
a

Therefore, individual terms making up the asymptotic series of any moment may be 
found by location of poles and determination of residues in the Laplace transform 
of that moment. For E W the leading terms originate from the poles at the 
highest values of s.

For 71 — 0 the poles of Gt^-j^s) are identical with the zeros of It(s). For 
equal masses the function Lo(s) has zeros at s = 1 and one each in the intervals 
—p < s < — (p — 1) for u = 1,2,.... Eq. (27) shows that Li(s) = Iq(s + 1/2) for 
equal masses and, hence, has its leading zero at s = 1/2. All I^(s) for £ > 2 have 
zeros only at negative values of s.

In the following only terms differing by at most one power of E/W from the 
leading term will be taken into account in any moment . This implies that for 
n = 0 only the terms oc {E/W) for £ = 0 and oc (E/W)1/2 for £ = 1 will be taken 
as significant. From eq. (26) follows that for n = 1 the poles of G^\s) fall into 
two groups. One group originates from the pertinent poles in G^°\s — 2m), i.e., 

poles in s — 1 + 2m and 1/2 + 2772. The other group originates in the zeros of Ie(s), 
primarily s = 1 and 1/2. Similar considerations apply to higher moments. As a 
result we get the list of moments indicated in table I which, for 0 < m < 1, either 
contribute to the leading term for a given n or differ from it by at most a factor of 
E/W.

Table I shows that all moments may be classified into families. A family orig
inates either in a term oc E/W or oc ^/E/W in any given order n, and for every 
subsequent generation a factor (E/W)2m is added. The dominating family origi
nates in (t2,£) = (0,0). The subsequent two families originate in (n,£) = (0,1) and 
(1,0), respectively. The former is in the lead for m > 1/4 while the latter domi
nates for 777 < 1/4. We recall that the prime selection criterion requires to neglect 
all terms which, at any given order of moment n, differ by more than one power 
of E/W or E/U from the leading term, i.e., the term originating in (77, £) — (0,0). 
Within that criterion, the term originating in (n, £) = (0,1) is always significant 
while the term originating in (77, £) = (1,0) is significant only for m < 1/2.
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Table I. Leading terms in asymptotic expansion of moments over the particle flux; 
listed are exponents a of (E/W)a. Only moments for n < 3 listed.

I
n

0 1 2 3 4

0 1
1/2

1
1/2 + 2m

1

1 + 2m

1/2

1/2 + 2m

2 1 + 4m

1/2 + 2m
1

1/2 +4m
1 + 2m

1/2

1 + 4m

1/2 + 2m

1/2 + 4m

3
1/2 + 6m

1 + 4m

1/2 T 2m
1

1 + 6m

1 /2 + 4m
1 + 2m

1/2

1/2 + 6m
1 + 4m

1/2 + 2m

1 + 6m

1/2 +4m

1/2 + 6m

Another two families derive from (n,^) = (1,1) and (2,0). Again the former 
dominates for m > 1/4 and the latter for m < 1/4 but both are significant only for 
m < 1/4. Of the two families originating in (n,£) = (2,1) and (3,0) the former is 
significant for m < 1/8, the latter for m < 1/6, etc. It is seen that the number of 
significant families increases when m approaches zero.

We shall argue in section 4.4 that only the leading three families need to be 
considered. Then we obtain

- 47rATS(W)

+ X 1 E (EP'ny 1 
+ 3<Sf'1 '‘°/i(l-2m)VF ( NC J (29)
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Table II. Same as table I but ordered into A-, B-, and C-families.

Family I
n

0 1 2 3 4

A () 1
1 1 + 2m
2 1 + 4m 1 + 4m
3 1 + 6m 1 + 6m

B 0 1/2
1 1/2 + 2m 1/2 + 2m
2 1/2 + 4m 1/2 4- 4m
3 1/2 + 6m 1/2 + 6m 1/2 + 6m

C 0
1 1
2 1 + 2m
3 1 + 4m 1 + 4m

where

r - m
m ^(1) -VXl -my d£

Moreover,

S(W) = —— CW1"2™
1 — m

(30)

(31)

is the stopping cross section. The numerical coefficients are determined by the 
recurrence relations

. ( n) n + (1 + lMi+11)

 2£+l Z€(l + 2mn)

R(n) n W + I)2 - M2^
2£+l Z/(l/2 + 2mn) 1 }

(n) n
£ 2£+l Ie(l + 2m(n- 1))

and the initial values
^(°) _ nW) __ z»(i) __ I

>r0 — — co —

The recurrence scheme for the three families is illustrated in table II.
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4.4 Choice of Exponent

Realistic atomic interaction potentials are screened-Coulomb like, i.e., close to 
at small internuclear distances and steeper at greater interaction distances. This 
feature translates into power-like elastic scattering cross sections but with energy
dependent exponents m such that m decreases with decreasing projectile energy. 
A reasonably reliable procedure for fixing m may be based on the stopping cross 
section, calculated accurately for a given interaction potential and matched in value 
and slope by a power law as a function of energy.

Collision cascades are typically initiated by a high-energy particle but the ma
jority of atoms set in motion has quite low initial energies. The question then arises 
of the choice of exponent m to properly characterize the development of a cascade. 
The answer is that one exponent is insufficient in general but that the m-values ap
propriate to the initial velocity v and the instantaneous velocity w jointly provide 
an adequate description (Sigmund, 1969b). Since the point is central we briefly 
go through the argument.

Choose the moment Gq^q;10 as a representative example. According to table I 
the leading terms in the asymptotic expansion go oc (E/W) 1/2+2m and oc E/W, 
respectively. Eq. (23) on page 14 reads

=G<0’;li0(E;W') (33) 

where Gi°q.10(E; PE) is asymptotically oc (E/H7)1/2 according to table I. Now insert 
Gq1q.1)0 (E/W)1/2+2rn and the power cross section for da. This results in

GÄi,o(UW,) = G<°’;1.o(E;IV) E2m/NC
Io ( 1/2 + 2m)

which is valid asymptotically. Note that Io (1/2 + 2m) is a finite nonvanishing 
number except for m — 1/4. On the other hand, when o oc E/W is inserted 
into eq. (33) the left-hand side vanishes everywhere except near the integration 
boundaries where the asymptotic expressions must be inaccurate. Here subsequent 
terms in the asymptotic expansion of Gq^.1i0(E; W) need to be taken into account. 
Since it is the low-energy behavior of Gq1^ o(E; W) which determines the slope of 
this linear function it must be the low-energy value of m, i.e., the value appropriate 
to the energy range around W, that is relevant in this evaluation.

The above argument may be applied to all terms listed in table I. As a result 
we conclude that exponents 2m reflect the length scale E2™ /NC of the collision 
cascade taken at its initial energy while powers E/W and y/E/W are governed by 
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the low-energy behavior. This may be rephrased differently: After classification 
of all contributing terms into families as noted above, the origin of each family 
is governed by the low-energy behavior. The recurrence scheme for higher-order 
moments, as expressed by eqs. (32) as well as the factors (£'2to/NC)n in eq. (29), 
on the other hand, concerns the overall dimensions of the cascade. Therefore these 
factors are determined by the high-energy scattering law.

The asymptotic expansion of the particle flux is meaningful only so long as 
E W. This implies that in order to arrive at meaningful results we shall have to 
assume E to be large enough that for common interaction potentials the exponent 
m valid at E exceeds the low-energy value m ~ 1/6. This implies that the families 
originating in (n,£) = (1,1) and (2,0), which are significant only for m < 1/8 and 
m < 1/6, may be ignored. The same is true for all families originating in higher 
moments. Then any significant moment over the particle flux must belong to one 
of the three families entering into eq. (29) and indicated in table II.

4.5 Symmetry Considerations
An important point of consideration is the dependence of moments on the direc
tional variable Q which is expressed by the labels £', /j,' of the significant terms. For 
moments of zero’th order, n = 0, only terms with (.' = (. and // = /z contribute ac
cording to eq. (26) on page 15. This implies that the leading A family of moments, 
originating in £ = /z = 0 and hence E = = 0, does not introduce any dependence
on Q into the underlying distribution. Therefore that part of the flux density must 
be isotropic. It is the flux density utilized in sputter theory (Sigmund, 1969b, 
1981).

The B family, also originating in the zero’th order, stems from £' = £ = 1 
and, consequently, /z = p' = 1,0,-1. This dependence propagates into higher 
orders. The angular dependence is centered around the incoming direction via 
e-Sl = (47r/3)

The third significant family, C, originates in n — 1 and £ — /z = 0. In Laplace 
space this term becomes proportional to the zero-order moment I — E — 1, /z = 
/z' = 0 and therefore carries with it a factor cos# = Q • ex that propagates into 
higher orders in n. Here, ex denotes a unit vector along the z-axis.

It is evident that our classification of moments into families according to their 
dependences on ion energy at the same time implies a separation of the underly
ing flux distribution into three contributions, each of which has its characteristic 
dependence on Q.
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4.6 Deposited Energy and Momentum
Moment equations for deposited energy and momentum are established in close 
analogy to those for the particle flux. After expansion in terms of spherical har
monics 

Fd(v,x,U) = y4-7f(2£ 4-1) (E; x, U) (e)

and taking spatial moments Ep^^E:, U) — dx xn Fd,l,h{E\ x, U) one finds the 
following set of moment equations,

(2Z+1)1V I

- Pe(a*t')F$f)l(E';U) - Pt(cos</>")F^(E“;U)}

= n U) + V(«+l)»C)) . (34)

These equations may be solved recurrently starting from n = 0 where the normal
ization condition (21) on page 14 reduces to

F^JE; V) = ^0E for E<U. (35)

Definitions and moment equations for Fp/ are analogous with those for Fp but 
the normalization condition (22) leads to

F{p\.,(E-,U) = V2MË
3

Seie^ for E < U.

Here a set of orthogonal unit vectors

(36)

has been introduced. The exact definition of the spherical harmonics is important 
here. The present notation follows Schiff (1981).

For the special case of elastic scattering, energy and momentum are conserved. 
Then eqs. (35) and (36) become valid for all energies. This determines the Laplace
transforms

^d,;,m(s) — US^o^o g

/ÜIU r
-----Ö---- eM

1
s - 1/2
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for the zero-order moments. We then find
/ ï?2m \ n(nc)

+ W)ï72^c'n> (£?)

(37)

(38)

where the coefficients and are identical with those entering the flux
density, eq. (29) on page 17. Note that the freezing energy U enters only into the 
moments belonging to the C-family and even there only as a common factor. Note 
that according to the criterion of significance spelled out in section 4.3 all moments 
with |/i| > 2 have to be ignored.

It is seen that the family of moments determining the deposited energy is equiva
lent with the leading family governing the flux density, i.e., the A family originating 
in (n,£) = (0,0) and shown in the upper part of table I. The deposited momentum 
generates two families originating in (n,£) = (0,1) and (1,0), respectively, corre
sponding to the B and C families in table II. However, the relative weight of the two 
families differs from that in the flux density. The origin of this behavior is obvious: 
The integrated momentum is exactly proportional to \/Ë and, therefore, has the 
simple Laplace transform ~ (s - 1/2)_1. On the other hand, the anisotropic term 
in the integrated particle flux is only asymptotically ex \/E and its Laplace trans
form is oc 1/71 (s) which is a more complex expression. This feature is immaterial 
to the moments in the TLfamily which are built up on the asymptotic form of the 
zero’th moment, but it does affect the moments of the C-family which originate in 
the low-energy behavior of the first moment. This difference propagates into all 
higher orders.

5 Depth Profiles

5.1 Approximate Expression for Flux Density

Since B- and C-terms enter with different weights into the moments over flux and 
deposited momentum, the anisotropic part of the flux density cannot just be pro
portional to the density of deposited momentum as has been asserted previously 
(Sigmund, 1981). It is, therefore, necessary to separately consider the three dis
tributions underlying the A-, B-, and C-families.

It was recognized recently that the missing link is a term proportional to the 
gradient of the deposited energy (Sckerl et al., 1995). We may write the flux
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density in the form

G(E,e-,W,n,x) = Tm [FD(E,e-,x) 
4ttNS(W) L W

A"m(^ ■ ex)
dFo(E, e\x)/dx 

NS{W)
| ^-F^E.e-xY

V2MW
(39)

where Km is a constant to be determined. The function F°P is defined through 
its moments via eq. (38). Only the B-moments contribute. F°P is one of two 
contributions making up the deposited-momentum profile, cf. eq. (42) below. The 
C-contributions have been collected in the gradient term. Thus, FP has simple 
scaling properties, its symmetry is governed by the direction of the incident beam, 
and just like Fp it is independent of U (or W). The latter feature was utilized in 
writing down eq. (39).

For a proof of eq. (39) all terms on the left and the right are expanded in terms 
of spherical harmonics and moments are taken over the depth coordinate. The 
resulting equation has to be satisfied separately for all (^, /z), and further separation 
is possible into terms proportional to yo*o(J2), Yj* (Q), and Y1*0(Q), respectively. 
Terms belonging to the A- and /^-families turn out to be identical on both sides 
while terms belonging to the C-family become identical provided that

Km = (1 - m)l0(3/2 - 2m) (40)

and

(41)

Eq. (41) follows readily from eqs. (32) on page 18, and eq. (40) specifies Km.
A slightly more complex decomposition was applied in our recent communica

tion (Sckerl ET al., 1995). Note in particular that the constant km introduced 
there differs from Km as introduced above. The present form requires more cau
tion with regard to divergent terms (as will be seen below) but makes the scaling 
properties more transparent.

5.2 Deposited Momentum

We may similarly decompose the density of deposited momentum into contributions 
from the B- and C-family. This yields

F^e;X,U) = d-^^+F^E,e;X). (42)

This decomposition, which has been proposed by Glazov (1995), is simpler than 
the one made in our previous note (Sckerl et al., 1995).
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5.3 Inverse Relationships

We have now the option to insert the asymptotic expression eq. (39) into the exact 
relations (5) and (6) on page 9 and in this way to check the accuracy of the former. 
Insertion of eq. (39) into eq. (9) yields

G{E,e- W,x)

H{E,e-W,x)

Tm Fp(E,e-,x)
NS(W) W

rm T 1 dFD(E,e\x)/dx F°P(E,e-,x) 
NS(W) [ 3 mCx NS(W) yWw

Insertion into (8) and integration over the interval U < W < E yields relations 
that are fulfilled asymptotically in the limit of U E. The leading deviations 
from identity go as (JJ/E')1~m.

5.4 Divergencies

Go back briefly to the first moment, n — 1 in eq. (29) on page 17 for £ = // — 0. 
The third term in the brackets is seen to diverge for m = 1/4 because of the factor 
/i(l — 2m) = Ii (1/2) = 0 in the denominator. However, the corresponding second 
term contains a coefficient which also becomes infinite for m = 1/4 because 
of the denominator To(1/2 + 2m) = 7o(l) = 0 in the recurrence relation eq. (32). 
This latter divergence has long been known (Sanders, 1968).

It is easily seen that the two divergences cancel each other and that the sum of 
the two contributions is finite. This feature propagates into all higher moments that 
originate in these first-order moments. It is important, therefore, that for m ~ 1/4 
the two contributions to the moments over the particle flux that are associated 
with the B- and the C-families of moments, either are both taken into account 
or both neglected, dependent on their significance compared to the contribution 
from the M-family. Since this statement applies to all moments it must also hold 
for the entire distribution. In other words, as long as eq. (39) is taken literally, 
with a uniquely defined power m, the second and third term in the brackets make 
up jointly the leading correction to the isotropic particle flux. If one of them is 
neglected the correction diverges for m — 1/4.

A similar statement may be made for the deposited momentum. This was first 
realized by Roosendaal et al. (1982) and has been discussed recently (Sckerl 
ET al., 1995; Glazov, 1995). Since the deposited momentum receives contribu
tions only from the B- and C-families of moments, calculated momentum profiles 
based on the 5-family alone (Littmark & Sigmund, 1975; Glazov, 1994b) are 
meaningful only for m significantly greater than 1/4. Momentum deposition profiles 
have subsequently been evaluated with due account of both families (Roosendaal 
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ET al., 1982; Sckerl et al., 1995; Glazov, 1995). Meaningful and mutually 
consistent results were achieved for E U. Artefacts are observed when E/U is 
not large: In that case more than the leading families would have to be taken into 
account.

Very few applications have been pointed out for the deposited-momentum pro
file itself (Sckerl et al., 1995). In fact, unlike the deposited energy which is very 
closely related to the damage profile, the deposited momentum has never been 
measured directly. On the other hand, any measurable parameter depending on 
cascade anisotropy must be related to deposited momentum. The question arises, 
therefore, which quantity should be tabulated.

From eqs. (39) and (42) we may deduce that the primary quantities are F°P and 
dFo/dx from which other parameters, including deposited momentum if needed, 
can be determined. Caution is to be exerted when one of them is considered without 
the other. The moments over the function FP are those studied by Littmark 
(1974).

5.5 Physical Origin of the Gradient Term

It is seen from eq. (37) on page 22 that the deposited-energy profile Fp(x) is 
determined entirely by the high-energy behavior (near E) of a collision cascade. 
At the same time eq. (39) is supposed to characterize the particle flux at the low- 
energy end (near IF), but nevertheless the leading term in the spatial distribution 
appears to be oc Ed(x). This cannot be generally true and a straight inconsistency 
can easily be constructed. Indeed assume the stopping power to decrease rapidly 
with decreasing energy, say, power-like with m negative. Then the dominating 
portion of a particle trajectory stems from the motion at low energies, and low- 
energy recoil atoms may move over a wider depth range than outlined by the 
slowing-down behavior of the ion and the high-energy recoils.

On the other hand, low-energy recoils are generated in the region of high energy 
deposition, and their initial directions of motion are distributed approximately 
uniformly over the unit sphere. Therefore the flux goes predominantly from high 
to low energy deposition, i.e., the particle flux must contain a contribution governed 
by the negative gradient of Fd just as in Fourier’s law of heat conduction.

A more quantitative argument may be formulated by means of the forward 
transport equation (18) on page 13. We consider a range of recoil energies W E 
so that the source term becomes immaterial, go over from velocity to energy
angle variables, and expand in spherical harmonics just as in case of the 
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backward equation (17). For //' = 0 we find

(2f' + l)2V y <ff|K(IV,T)G<.,oWa:)

- K(W + T,T')Pi,(cos<t>') + K(W + T,W')Pt.(cos<l>"') Gf,0(ir + ï»l

= -^(rG,._i.o(iv,x) + (e + i)g(.+1,0(mm) 

where (/)' and </>" are determined by the energy variables in case of elastic collisions. 
Consider the case of — 1. Here the right-hand side contains an isotropic contri
bution $Goo(VF, x)/dx which is essentially the dF]j/dx term on the right-hand side 
of eq. (39), and a contribution that varies rapidly with angle and may be neglected 
as a first approximation. The left-hand side contains three terms which all contain 
Gio(Wz,x), i.e., a contribution related to the third term on the right-hand side of 
eq. (39). Approximating Gio(kK, x) by the appropriate power law in W makes it 
possible to evaluate the integral and construct a quantitative connection. However, 
the essential conclusion is that the gradient term originates in the low-energy be
havior of the cascade and will have the form given in eq. (39) for a wide variety of 
initial conditions.

6 Generalizations
Eq. (39) on page 23 has been written in a form that suggests it to be more general 
than what can be inferred from the actual derivation. It is the purpose of the 
present section to document that this is indeed true and to provide guidelines for 
how corrections can be made for physical effects which were not included above.

6.1 Non-Selfbombardment

Consider first the important case of a monoatomic medium bombarded by an ar
bitrary ion with an arbitrary mass. The backward transport equation for this case 
is a straight generalization of eq. (18) on page 13,

N f da0(v,v', v"){g0(v) - Go(v') - G(v")} + cosøJ^Go(v) = 0 (43)

where the subscript 0 denotes the foreign ion. It is important to note that this 
subscript is missing in the recoil term under the integral which takes over the role 
of a source term. A source term of the form present in eq. (18) does not occur since 
no target atoms are moving initially.



MfM 44:3 27

Now assume the ion-target cross section dcro to have power form. We may 
then solve eq. (43) by Laplace transform. This yields the following result for the 
zero-order moments,

where

JM (*)

JM

KM

dtt 1 m|l — Pf(cos ø')(l — £)s}

dH-^^FXcos^')^-

(44)

(45)

(46)

Here, 7 is the energy-transfer factor defined after eq. (24). The additional subscript 
0 indicates the incident particle, and cos</>' and cosø" have been specified in eq. 
(28) on page 15. Eq. (44) is remarkable since it does not imply assumptions about

(s) except that it exists. In particular no assumption enters regarding the 
relation between the power cross section dtr0 and the cross section da governing 
target-target interactions.

For elastic collisions we know that (s) has its leading singularities in
s = 1 for £ = 0 and in s = 1/2 for £ = 1. It is easily verified that

K0(l) , , JCi(l/2) /M
W = landPW = VM

where Mq and M denote ion and target mass, respectively. Therefore, within the 
approximation adopted in this paper we have

4”o,o;o,o(-E;Mz) = G$.0,0(E;VF)

(47)

independent of the scattering law since J/(s) is nonvanishing for s > 0. These 
two terms, which generate the A and B families of moments, are thus governed 
entirely by target properties except that the factor yjMq/M needs to be taken 
care of properly. This may be done by replacing the factor y/E/W in eq. (29) by 
y/2MoE/2MW, i.e., the ratio of momenta.

The third term in the brackets of eq. (29) on page 17 does not have a form that 
would suggest a dependence on ion mass. Indeed the Laplace transform G^o oq 0(s) 
is given by

G0;0,0;1,0(S) - Jo(s)
_m w2m—(o)

Ko(s)Gq O.1)O(s) + G0;1>0;1 0(s 2m)
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where Co denotes the constant in the power cross section for ion-target interaction2. 
Here only the first term in the brackets yields a singularity at s — 1. Consequently

2This notation interferes with Sigmund (1969b) where Co denotes the value of Cij for m — 0. 
The quantity called Co here was denoted C^) in earlier work (Winterbon et al., 1970).

we have 
(s — 1) — Go 0;1 0(s ~ 1)

as was asserted above.
An analogous analysis may be performed for deposited energy and momentum 

with M being replaced by Mo in the normalization condition (22), page 14. Similar 
to eq. (47) we find

y(°) 
r d,o-,o,o

F (o) (48)

With our decomposition into three significant families it is clear that the higher 
moments for each family apply to flux as well as deposited energy and momentum.

From eq. (48) we may conclude that eq. (39) on page 23 equally well applies to 
non-selfbombardment provided that proper beam-dependent deposited-energy and 
momentum distributions are employed.

6.2 Electronic Stopping: High-Energy Correction

This is the first of two paragraphs providing modifications to the central relation
ships when electronic stopping is not negligible. We shall treat the effect within the 
traditional scheme (Lindhard et al., 1963a, 1963b) outlined already in section 
2.5 on page 10,

• separation of collisions into electronic and nuclear events,

• neglect of angular deflection in electronic collisions, and

• neglect of any feeding of energy from the electronic into the nuclear system.

For self-bombardment an additional term

(2€ + l)NSe(E)AGW/,)(,(£;W) (49)

appears in eq. (23) (page 14) on the left-hand side, and corresponding terms have 
to be inserted in eq. (34) (page 21) and the equivalent set of moment equations for 
deposited momentum. Here Se(E) is the electronic stopping cross section.

The primary effect of electronic stopping is a draining of energy at all stages 
of a collision cascade. Therefore neither energy nor momentum are conserved as 
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far as nuclear motion is concerned. In particular the normalizing integral over the 
deposited energy Fp becomes proportional to a function v(E) representing the 
part of the initial energy E which ends up in nuclear motion (Lindhard et al., 
1963a). This function is well-defined provided that Se/Sn becomes small at low 
energies. Also the zero’th moment over the flux density for £ = 0 becomes oc zz(E^) 
under the same assumption.

The assumption underlying this treatment is that v(E) becomes oc E at low 
energies. In case of non-negligible electronic stopping at low energies, the propor
tionality factor will differ from the one valid for elastic scattering. That effect will 
be considered in section 6.4.

A rough estimate demonstrates the effect of electronic stopping on the zero’th 
moment over the deposited-momentum profile, i.e., moments over momentum or 
flux containing , to be given by the substitution \/Ë —> y/F(E). This relation - 
which is not exact - may be rationalized by means of an approximation mentioned 
by Lindhard et al. (1963a): Consider first the integral equation for v(E),

N / dan[v(E) - p(E - T) - zz(T)} + NSe(E)
dv(E) 

dE
= 0.

Utilizing the fact that the cross section for nuclear scattering dcrn peaks at small re
coil energies T, one may approximate u(T) ~ T and v(E—T) ~ v{E')—Tdv{E)/dE. 
This yields the well-known estimate

r E
v(E) ~ / dE'

Jo
Sn(E')
S(E') ’

where S = Sn -I- Se. When the same approximations are applied to any of the three 
components of the deposited momentum, say P(E), one finds

exp dE"
Sn(E") \

2E"S(E") I

This expression is easily seen to reduce to \/2ME when electronic stopping is 
neglected, as it should.

For a convenient estimate assume that

Sn(E)= (E\r
S(E) \EJ ’ E < Ei and r > 0;

Then integration yields

1 -
1

r 4- 1
z/(E) = E
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and
P(E) = V2ME

2(r + 1)

by Taylor exansion for E E\. This confirms the above assertion.

6.3 Role of Binding

Binding forces to lattice sites may be modelled by incorporation of a binding energy 
Ub in the recoil term of transport equations (Lindhard et al., 1963a). This 
implies the substitution E" = T - t/b in eq. (23) on page 14 and complicates 
the algebra involved in the Laplace transform method. However, series expansion 
in powers of U^/W has been demonstrated to lead to valid asymptotic solutions 
(Andersen & Sigmund, 1974).

In brief, the Laplace transform of the recoil term contributing to eq. (26) changes 
from G^.tl^\s)Ke(s) to 

where is the function defined by eq. (46) for 7 — 1. After Taylor expansion
—( r)of the above integral in powers of [Zb/fT as well as of Get, M,(s) itself,

the resulting system of equations may be solved recurrently starting from the zero- 
binding solution u = 0. It is then readily seen that all coefficients are
singular at s = Sq where

fl for 
S° ~ [ 1/2 for

£ = 0
£=1

and, therefore, contribute to the asymptotic solution for E W > C/b- The 
first few terms may be conveniently expressed by their ratios to the solution for 
vanishing binding,

~(so + 1)
KeM 

If(s0 + 1)

(so + l)(so + 2)
Ie(so + 2)

1 7<Kso + 1)A
2 Ie(s0 + 1) J ’
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where J As) is the function defined by eq. (45) for 7=1.
With this we find that the n = 0 moment of the A-family receives a correction 

factor

+ ' ~1 +(2 — m)CZb/ty (50)

This result was derived long ago (Sigmund, 1973). Urbassek et al. (1995) 
rederived it recently and confirmed its accuracy by computer simulation. They 
also pointed out an inconsistency with a later, less acurate approximation to the 
same series (Sigmund, 1981).

Corrections to moments for n > 1 are of the order of Ub/E and are thus 
negligible within a scheme where only the two leading terms in E/W are analysed. 
Therefore we may conclude that the factor written up in eq. (50) also applies to 
the profile belonging to the „4-family and not just to the moments.

The modifications on moments and profiles of the 23-family are evaluated simi
larly. They are accomplished by a factor

-9/11

As in eq. (50), the binomial approximation is exact to the second order in Ub/W. 
Within the accuracy of the scheme this expression looks sufficiently similar to eq. 
(50) to justify ignoring the difference.

The effect on the gradient term, i.e., the C-family, is more complex since binding 
corrections enter twice. Since these terms are proportional to Gri°o;i,o(s)> a ß-type 
correction enters but taken at s = 1 — 2m instead of so = 1/2. That correction 
may be written in the form

R = 1 - (2 - 2m) Ki(l — 2m) Ub
A (2-2m) W (51)

In addition, another correction enters which is of the A type and results from the 
singularity of G^oi 0(s) at s — 1. That correction has exactly the form of eq. (50).

Examination of eq. (51) reveals that this correction goes in the same direction 
as all other ones discussed, but that it varies more rapidly with m. For m = 0 
it has about half the magnitude indicated by eq. (50) but it approaches infinity 
at m = 1/2. While the value of m in the pertinent energy range is well below 
that limit we do keep in mind that the binding correction is more pronounced in 
the gradient term than in the energy and momentum terms. This may be not too 
surprising in view of the origin of this term in the motion of low-energy particles.
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6.4 Electronic Stopping: Low-Energy Correction

This paragraph serves a study of the effect of electronic stopping on the low-energy 
behavior of a cascade. A similar procedure as the one presented in the preceding 
section can be applied to estimate the contribution of electronic stopping to the 
S(W) denominators in eq. (39). We recall that this notation is just an abbreviation 
for Sn(W) since electronic stopping was neglected in the derivation. A physical ar
gument (Sigmund, 1981) generates a factor 1/NS(E) from the energy degradation 
dE/dt — vdE/dx. The nature of the stopping process is immaterial in this argu
ment. Therefore, NS(W) ought to be the total (nuclear plus electronic) stopping 
power. Yet it is more doubtful whether a similar argument holds for the additional 
denominator 1/7VS(W) in the C term.

Assume some power dependence of the electronic stopping cross section,

Se(E) = kEa

with a < 1, and add eq. (49) on page 28 to eq. (23) on page 14. In Laplace space 
this implies addition of a term

(2£ + 1)——-(s - a 4- -a+1)

in eq. (26). Then, recurrent solution is possible by Taylor expansion in the ratio 
between electronic and nuclear stopping power at energy W. With the parameter

NSe(W)
£ ~ NCW1-^'

the procedure outlined above yields series expressions for the correction factors 
to be applied to the three contributions to the particle flux derived for elastic 
collisions. For the A-family we obtain

00 J( \
Ra — i + y^(—s)J JJ Xo ( i + r(i - «) L

j=l r=l ' '

where

This series is divergent but offers itself to transformation into a continued fraction. 
We refrain from going through the explicit procedure but approximate the result 
by taking into account only the first term, so that

Ra ~ l + eA'o(2-a)' (52)
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For the ZTfamily the same procedure leads to

R 1
ß ~ l + £Xi(3/2-a)

As in the previous section, the C-family receives two correction terms. This matches 
very well the occurrence of two denominators 5(W) in eq. (39) in that term. The 
first factor Rc^ is identical with specified in eq. (52), while the second follows 
from eq. (53) by the replacement 1/2 —> 1 — 2m, i.e.,

o___________ 1
^’2 “ l+eXi(2-2m- a)

We note that the chosen representation of the correction factors is consistent with 
the expectation that one or several of the denominators in eq. (39) expand according 
to S'(W) —> S'n(W) + Se(W). The actual expansions take on the form

S(IV)-> Sn(lV) +-^Sem
1 — m

where X represents the proper expression occurring in the above three correction 
factors.

Numerical evaluation of eqs. (52-52) shows that X/(l-m) exceeds the expected 
lower bound X/(l — m) = 1 for all feasible values of m and a. The excess is 
moderate - X/(l — m) < 2 - for eqs. (53) and (54) but somewhat greater in case 
of the energy - X/(l — m) < 3.

The role of electronic stopping at low energies was studied many years ago but 
never published (Winterbon & Sigmund, 1973). The problem has also been 
discussed in context with computer simulations (Biersack & Eckstein, 1984; 
Harrison & Jakas, 1984, 1985).

6.5 More General Cross Sections

The form of eq. (39) (page 23) also suggests that the power cross section need not 
be a necessary basis. It has already been argued in section 4.4 (page 19) that in 
applications we may be forced to operate with two power cross sections applying 
to the range around the initial energy E and a recoil energy W, respectively. 
With W varying from somewhat below E - wherever the asymptotic expression for 
E/W 1 may start to be meaningful - downward, the second m-value may vary 
considerably.

The guiding principle in the notation underlying eq. (39) and its various analogs 
is that explicit occurrences of m should be condensed into dimensionless numbers, 
here and Km, where fm is a well-established parameter that determines the 

(54)

(53)
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sharing of energy between collision events above and below threshold (Sigmund, 
1969c). Tm varies slowly in the interval 0 < m < 1 (figure 1). On the other hand 
the quantity Km, although varying slowly for 0 < m < 0.2, becomes singular at 
m = 1/4. This is not influential for the flux density because the singularity is 
cancelled by a corresponding one with the opposite sign in the third term in eq. 
(39).

6.6 Isotope Effect

The present paragraph serves to provide an estimate of the particle flux for a 
medium containing particles with different masses. This case is of interest in the 
study of isotope effects. This aspect has been studied long ago for the isotropic 
contribution to the particle flux (Andersen & Sigmund, 1974) and more recently 
for the momentum term (Sigmund & Sckerl, 1993). We shall rederive those 
results here, but the main goal is an estimate of the mass dependence of the gradient 
term.

The general formalism has been outlined in appendix A. While the expressions 
governing absolute fluxes may look a bit clumsy, their ratios reduce to fairly trans
parent expressions. In the notation of appendix A we find the following expressions 
for the ratios between particle fluxes of isotopes 1 and 2 in a binary mixture,

Pa

Pb

Pc

^,0(1)
^2,0(l)
^1,1 (1/2)
S!'2i1(1/2)

^2i,o (l)^ii;io;io(l 2m) + ^i2,q(1)^21;io;iq(1 — 2m) 
^21,o(l)^12;lO;lo(l ~ 2m) + ^12,0 (l)^22;10;10 (1 ~ 2m)

which, according to eqs. (71) and (72) and the integrals (45, 46) reduce to

Pa

Pb

Pc

NiC^
N2C12
Ni C21 J2i,i(l/2)
N2C12 K12>1(l/2)
A'i C2i N\C2\J2\^i + N2C22IX + N2C\2K2x \
N2 C*i2 N2C12 Ji2)i + NiCnIi + ATi(72i JCi2,i s=l —2m

(55)

(56)

(57)

Here, I(s) = J(s) — Æ(s), and the first two subscripts in Jik,e(s) and A/a;^(s) 
denote the collision partners.
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Figure 1: The constants rm, eq. (30) and Km, eq. (40) versus m.

It is seen that the well-known isotope effect in the isotropic flux (Andersen & 
Sigmund, 1974), expressed by the ratio

M C21 _ M (MA
A^2 C12 N? J (58)

by insertion of eq. (25), is common to all flux ratios. The additional factor in eq. 
(56) is readily seen to reduce to y/Mi/Mz, a result found previously (Sigmund & 
Sckerl, 1993). Thus, the isotope effect in the ZTterm,

Mi \ i/2"2m

(59)

is typically preferential in the heavier species, provided that m < 0.25 at the energy 
W where the flux is recorded.

The flux ratio for the C-family is evaluated conveniently in the limit of small 
isotopic differences. Up to first order we find

where

pc. * (A Mi — M2
M

Z(m) =
A Ji (1 — 2m) — mli (1 — 2m)

Ji (1 - 2m)

(60)

(61)

and
1 f1 2AJx(s) = - / dtt-TO(l-i)s_1/2-
2 Jo
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Figure 2: The function Z(m) defined by eq. (61)

The function Z(m) is shown in figure 2. It is seen to be positive in the pertinent 
range of m-values and surprisingly large. Most notably, the gradient term prefers 
the heavy species, as does the momentum term.

7 Results

7.1 Moments

Moments were evaluated recurrently following the procedure described by WlN- 
TERBON ET al. (1970). Numerical values were checked against those reported 
by WlNTERBON ET AL. (1970) for deposited energy and Littmark (1974) for 
deposited momentum, and excellent agreement has been found.

7.2 Construction of Profiles

Profiles reported here have been evaluated by the Padé method'(LITTMARK, 1974). 
Consider some profile /(£) and write down its Fourier transform 

1
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as a Taylor series in the moments over /(£). With a finite number of moments 
given, the Fourier transform can be approximated by a polynomial. The polynomial 
is then matched by a Padé approximant,

A ~ Pr(r)

_ QsCO ’

where pr(r), Qs(r) each are polynomials of degree r, s, respectively, with s > r. 
Inverse Fourier transforms of the resulting Padé approximants have been found 
numerically.

In view of the number of coefficients determining the polynomials in eq. (7.2) 
we need r + s + 1 moments. Criteria for the choice of r and s have been discussed 
by Littmark (1974). In the numerical procedure great care has been taken to 
find stable solutions for Padé approximants. Typically this required taking into 
account moments of order up to n = 20, but accurate solutions were in particular 
cases found already with n = 6 to 8. Profiles presented here were mostly evaluated 
with one of Littmark’s favored choices, r — 6 and s = 10.

The Padé method tends to smear out discontinuities which may be present at 
x — 0. Such discontinuities may be dramatic when the lower energy limit W or U 
is set equal to zero (Glazov, 1994a, 1994b), and they originate in the fact that 
dissipation of energy/momentum starts in the plane x — 0. In particular, such 
discontinuities are unrelated to the possible presence of a target surface, although 
a surface, if present in x — 0, must be suspected to substantially modify them. 
The results to be reported below always refer to nonvanishing values of W or U. 
This feature is common with the solutions offered in our previous work (Sckerl 
et al. 1995) as well as a recent paper by Glazov (1995).

7.3 Monte Carlo Simulation

As an independent check also Monte Carlo simulations were performed. A program 
was developed for this specific purpose based on an existing code (VlCANEK & 
Urbassek, 1988). The code was geared to simulate the physical situation in 
accordance with the theoretical model described above, i.e., random motion in 
an infinite medium, characterized by a scattering law equivalent with eq. (24) and 
with a cutoff impact parameter large enough to ensure a negligible systematic error. 
Deposited-momentum and -energy profiles were determined in accordance with an 
adopted threshold U and a depth resolution equivalent with a grid of typically 100 
intervals.
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Figure 3: Deposited-momentum profiles for self-bombardment at normal incidence, cal
culated from the B- and C-families for four values of E/U and power-law scattering ne
glecting electronic stopping with m = 0.2. Circles found by Monte Carlo simulation of 
40 000 events. Lines found by Padé method on the basis of ten moments. The abscissa 
unit is E2m/NC. Profiles have been normalized to unity.

7.4 Deposited Momentum and Energy

Figure 3 shows deposited-momentum profiles for self-bombardment at normal in
cidence, calculated from the B- and C-families for four values of E/U and power 
scattering neglecting electronic stopping with m = 0.2. It is seen that there is 
nearly perfect agreement between the Monte Carlo results and the profiles recon
structed by the Padé method, also near the ‘surface’ x — 0. The only exception 
occurs in the behavior around x ~ 0 for E/U = 10. Here the asymptotic solution 
predicts an inward-directed momentum for x < 0 which is unphysical. This limita
tion of the asymptotic approximation is, of course, not found in the Monte Carlo 
solution which turns negative also for this comparatively low value of E/U.

According to Glazov (1995), the momentum deposition profile makes a jump 
at the surface, the magnitude of which is ~ (C/E)1~m/(1 — m) for E U in 
the units applied in figure 3. This becomes ~ 0.2 at the lowest ratio, E/U — 10. 
Within the grid chosen for the Monte Carlo computations this value is compatible 
with the simulation data.

Figure 4 shows similar results for m = 1/3. This case was considered by
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Figure 4: Same as figure 3 for five values of E/U and m = 1/3. Compared with results 
reported by Roosendaal et al., 1982.

Roosendaal et al. (1982) and we find surprisingly close agreement, consid
ering that their expansion scheme for moments differed from ours. Their profiles 
were also constructed by the Padé method. Again the curve for E/U = 10 shows 
an unphysical behavior at x < 0 where it is still positive, as pointed out also by 
Glazov (1995).

Figure 5 shows similar profiles for three different power cross sections. It is 
seen that for m = 0.4 the momentum profile is insensitive to the ratio E/U except 
near x = 0 while for m — 0.2 all parts of the profile are sensitive to E/U. The 
latter feature, as well as the qualitative behavior of the profile is in good agreement 
with what was found by Glazov (1995) for m = 1/6. The procedure utilized in 
that work to construct profiles is expected to be more reliable near x = 0 than the 
Padé method. Even though the m-values differ, Glazov’s profiles are noticeably 
sharper around x — 0 than ours. On the other hand, the agreement with the Monte 
Carlo simulations indicated in figure 3 suggests that significant disagreement must 
be limited to a region of the order of the grid size in the simulations, i.e., 1-2% of 
the mean range.

The most pronounced feature emerging from figure 5 is a strong increase of the 
negative-momentum portion around x = 0 with decreasing m, i.e., with increasing 
importance of wide-angle deflection and, hence, momentum reversal events. This
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Figure 5: Deposited-
momentum profiles for 
self-bombardment at nor
mal incidence, calculated 
from the B- and C-families 
for four values of E/U 
and power-law scattering 
neglecting electronic stop
ping with m — 0.2, 0.3, 
and 0.4. The abscissa unit 
is the mean pathlength 
of the incident particle, 
R = (1 - m)E2m/2rnNC. 
Profiles normalized to unity. 
Note the different ordinate 
scales.

feature also shows up when the mass of the bombarding ion differs from that of the 
target, as is illustrated in figures 6 and 7. The variation with mass ratio is very 
pronounced; note the different ordinate scales. Figure 6 also compares the profile of 
deposited energy with that of the lateral component of deposited momentum. That 
component is nonvanishing for oblique bombardment. It is seen that although the 
two profiles have similar symmetry they are by no means identical. Their relative 
proximity to the surface appears to be governed by the mass ratio.

7.5 Flux Density

Figure 8 shows angular distributions of the density of particle flux at different 
depths, i.e., the angular dependence of the quantity G, suitably normalized. Note 
in particular that the flux through a plane (x = const) carries an additional factor 
I cos#| = |Q • eæl.

Several features emerge from a comparison of figures 8 and 9. Consider first
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Figure 6: Deposited-
energy and momentum
profiles at 45° incidence
for E/U = 1000 and mass
ratios M/Mq— 4, 1, and 
0.25. Both the longitudinal 
(x) and the lateral (y) 
component of the deposited 
momentum are given with 
the y axis lying in the plane 
of incidence. Power scat
tering neglecting electronic 
stopping with m — 0.3. 
The abscissa unit is the 
mean path length of the ion, 
R = (1 - m)E2m/2mNC0. 
Profiles normalized to l/>/2. 
Note the different ordinate 
scales.

column 3 in either graph, referring to the flux at the mean depth of deposited 
energy, (x)d, i-e., near the region of maximum flux density. An inward-directed 
correction to the particle flux is observed in all cases, depending on the energy ratio 
E/W but insensitive to the power exponent m and only weakly dependent on mass 
ratio M/Mq. The relative magnitude of the correction, on the other hand, appears 
noticeable: At E/W = 100 the forward flux is approximately twice as large as the 
backward flux, yet at E/W > 103 the difference is insignificant.

Consider next columns 4 referring to the far edge of the flux profile, x = {x)p + 
Axd, where Axz> denotes the standard deviation of the damage profile in the 
notation of Winterbon et al. (1970). Here a pronounced inward-directed flux 
had to be expected and is indeed found: At E/W = 100 the ratio between forward 
and backward flux is of the order of 3-4 and quite insensitive to both m and mass 
ratio.

Column 2 shows equivalent information at the near edge of the flux profile, 
x = (x)D — Arrp. With the exception of the case of m — O.3,M/Mo = 4, this
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Figure 7: Same as fig
ure 6 for normal incidence. 
There is no lateral momen
tum deposition profile in 
this case. Profiles normal
ized to 1. Note the different 
ordinate scales.

position appears to be close to the point of vanishing flux correction.
Finally, column 1 refers to the position x — 0, i.e., the plane of incidence 

of the primary particle where discontinuities have to be coped with and where 
the deposited-momentum profile is negative. We may note that for the range 
of mass ratios under consideration the position x = 0 is always to the left of 
x = {x)D — Azp. Thus, whenever the flux is noticeably anisotropic the anisotropy 
is more pronounced in column 1 than in column 2. The degree of anisotropy is very 
sensitive to the mass ratio. A dependence on m is visible but less pronounced. Most 
striking is the weak anisotropy found for M/Mo = 0.25, i.e., for a heavy primary 
ion incident on a light target. The pronounced backward orientation of the flux 
for equal masses and M/Mo = 4 must be caused by momentum reversal due to 
wide-angle scattering. Its absolute magnitude may be subject to some uncertainty 
because of our use of Padé approximants. Moreover, the pronounced heart shape 
found for m = 0.3 and equal masses demonstrates that the flux correction has 
roughly equal magnitude as the isotropic term. Therefore, subsequent correction
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Figure 8: Angular dependence of particle flux density eq. (39) at depths x = 0, (x)o — 
Aæo, (x)r>, and (x)r> + Aid from left to right, for m = 0.3 and mass ratios M/Mq = 4, 
1, and 0.25 from top to bottom. Ratios E/W indicated in graphs.

terms must be suspected to have some significance. Nevertheless the tendency is 
clear: The flux is directed outward at all ratios E/W, and most pronouncedly so 
at the lower values, E/W ~ 100.

The fact that the anisotropy appears more pronounced for equal masses than 
for M/Mq = 4, despite a pronouncedly higher momentum reversal in the latter 
case emerging from figure 6 must be due to the fact that the flux at equal masses 
also contains the reflected fraction of incident particles.

Figure 10 shows angular distributions of the flux density at oblique incidence. 
It is seen that the effect of momentum conservation is very pronounced at the far 
edge of the flux profile (column 4) for all mass ratios, in particular so for a heavy 
incident ion. Conversely, the flux at the surface is to some degree collimated around 
the direction of specular reflection, most pronouncedly so for light incident ions.

The leftmost flux diagram in the middle row of figure 8 may be compared with 
a graph computed by Roosendaal et al. (1982) for m = 1/3 and equal masses
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Figure 9: Same as figure 8 for m = 0.2

where a dramatic discrepancy is found. We note first that a relation for the flux 
equivalent with eq. (39) on page 23 was not derived in that work. Instead, an 
expression for the freezing density mentioned in section 2.2 (page 7) was adopted 
and written as a sum of two terms proportional to the density of deposited energy 
and momentum, respectively. The qualitative behavior for E/W > 102 is similar to 
our finding although we find the anisotropy noticeably more pronounced at E/W ~ 
100. A major part of the diagrams given by Roosendaal et al. exhibit an 
inward anisotropy. This feature is related directly to regions of positive momentum 
deposition in the negative halfspace for E/W ~ 10 or less, an unphysical behavior 
which we have asserted above to indicate the limits of the asymptotic expansion in 
powers of E/W.

7.6 General Behavior of the Anisotropy Factor

If only the first term in the brackets of eq. (39) on page 23 is kept one obtains 
a widely used expression for the flux density in an atomic collision cascade. This
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Figure 10: Same as figure 8 for angle of incidence 45° (from ‘southwest’).

expression represents an isotropic velocity distribution of recoil atoms and has 
been the starting point for estimates of sputtered-particle fluxes in the traditional 
backward and the less common transmission geometry (Sigmund, 1981). Here we 
are interested in the limitations of and corrections to this expression. Deviations 
may be expressed by way of an anisotropy parameter P(x) defined as

_ G(E,e-,W,tt,x) zO . W dFD(E,e-x)/dx
W Giso(E,e-,W,n,x) ' x NS(W) FD(E,e-,x)

n W tt-F0P(E,e-,x)
vWÏF FD(E,e;x) ’ 7

where Giso represents the zero-order (isotropic) approximation to eq. (39). A factor 
of this type was discussed by Roosendaal et al. (1982), based, however, on 
an expression for the freezing density instead of the particle flux. Moreover, the 
expression utilized did not contain a gradient term explicitly. We have plotted 
contour lines of P(x) in figures 8-10 for the specific case of power scattering. 
The power approximation must be expected to break down in the limit of W <^E 
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which is of greatest interest in practice. We shall in this paragraph try to estimate 
the behavior of P(x) more broadly.

It has been argued in section 4.4 (page 19) that a more comprehensive descrip
tion may be based on two power cross sections, one applying to the range near the 
initial energy, < E and the other to the range near the instantaneous energy, > W. 
This feature has already been incorporated into the notation employed in eq. (62) 
where the only explicit occurrence of a power exponent lies in the numerical con
stant Km. The arguments put forward in sections 4.4 and 5.5 strongly suggest that 
m in Km be chosen in accordance with the scattering law at energies > W. For 
W -C E this typically implies that m < 0.25, i.e., Km (figure 1) becomes positive 
in accordance with its significance as a diffusion term.

Consider first the last term in eq. (62) and note that

W
y/2MW

FD(E,e-,x)

The energy dependence of this contribution to P(x) is given by y/W/E. While the 
high-energy scattering law enters through the ratio of Fqp/Fd there is no explicit 
or implicit dependence on the low-energy scattering law. Hence, this contribution 
will be negligible for, say W/E 0.01.

The behavior of the second term in eq. (62) is quite different. Here we have

NS(W) ‘x NC 

dFo{E,e\x)/dx NCq
FD(E,e-,x) x E2m°'

where Co is a constant defining a power cross section according to eq. (25) (page 
15) along with mo. This contribution is governed by R(W)/Rq(E), where R and 
Ro stand for slowing-down ranges of recoil and projectile, respectively. Since the 
nuclear stopping power decreases at low energy, ranges approach zero more slowly 
than what would be expected from the high-energy behavior (Lindhard et al., 
1963b). Therefore the anisotropy correction from the gradient term approaches 
zero more slowly than that of the momentum term. Consequently, deviations of 
the anisotropy parameter from unity for W/E 0.01 are governed mainly by the 
gradient term.

For a more quantitative statement we need an estimate of FD. Since only the 
logarithmic derivative enters into P(x) that estimate does not need to be very 
precise. We therefore approximate the deposited-energy profile by the Edgeworth

oc W1/2

oc ET1/2.
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approximation which, in the leading term, assumes a gaussian profile for given 
mean depth (x)p and width In the notation of Sigmund (1968) we find 

where $o(C) — exp(—£2/2)/\/27r and Hen(£) are Hermite polynomials in the nota
tion of Abramowitz & Stegun (1964). Moreover,

x - (x)p . _ (Aæ3)D
V^Az2)^ ’ (Az2)3/2

and hence,
d log Fp 

dx
1

^/(Az2)^
(_^+uHe2(ç)...y

This yields a rough estimate of the anisotropy factor,

(xp - x)2
(Az2)r>

For the qualitative behavior we consider only the first term in the parentheses, 
corresponding to a gaussian profile. It is seen that the deviation from P(x) = 1 
is directed inward for x > (x}p and outward for x < {x}p. In particular, for 
x — 0 it goes as E~2m, i.e., the sputtered flux becomes increasingly overcosine 
with decreasing incident energy.

7.7 Power-Law Anisotropy

It has become customary to characterize the angular dependence of an anisotropic 
particle flux by a power law of the form

/(cos$) ~ A|cosn$| (63)

with constants n and A. In the present picture, particle fluxes come out in the 
form of

(/(cos#) ~ B\ cos$|(1 + &| cos$|)

with constants b and B. For overcosine distributions we have n > 1 and b > 0. In 
the opposite case distributions are under cosine.

We may express one description by the other by chosing constants A, B such 
that f and g are normalized to the same value (e.g. 1) and by equating the values
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Figure 11: Matching angular anisotropy to a power-law profile, eq. (63) by means of eq. 
(64)

of the two functions at normal emergence 0 — 0. This requirement, which could 
also be used to extract n from measurements, yields

n = 1 +
2b

3 +2b' (64)

The resulting relationship is illustrated in figure 11.

8 Discussion

8.1 Deposited Momentum and Energy

It was established long ago (Winterbon et al., 1970) that the spatial distribution 
of deposited energy is a well-defined quantity in both one and three dimensions to 
the extent that a limiting value exists when the freezing energy U approaches zero.

The behavior of the deposited-momentum profile is more complicated. In early 
work (Littmark, 1974; Littmark & Sigmund, 1975), a vector distribution was 
evaluated which had scaling properties with the beam energy similar to those of the 
deposited energy and had the right normalization. This function, which is identical 
with F°p in eq. (39) on page 23, has weaknesses that were recognized early on but 
removed only gradually.

The fact that this profile showed a physically acceptable behavior only for m > 
0.25 was recognized immediately (Sanders, 1968). The fact that the momentum 
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profile must be sensitive to the freezing energy U can be extracted from the work 
of Roosendaal et al. (1982) who, implicitly, included terms going beyond F°P 
in their analysis. The existence of a gradient term, normalized to zero and having 
scaling properties in angle and energy different from F°P was established only very 
recently (Sckerl et al., 1995; Glazov, 1995). The present work adds little new 
to this, except for the fact that our momentum profiles, evaluated numerically by 
the Padé method, agree well with those of Roosendaal et al. (1982) where 
comparison is possible, and that there are minor differences from those of Glazov 
(1995) in the limit of low freezing energies.

The most important lesson to be learned from these studies is the fact that un
like measurements of energy, measurements of momentum are sensitive to threshold 
effects including binding energies. This may be illustrated on sputtering data. It 
was predicted theoretically (Sigmund, 1968) and confirmed experimentally (An
dersen, 1970, 1971) that the main material parameters determining the energy 
reflection coefficient (or sputter efficiency), are the mass and atomic number while 
the cohesive energy is insignificant. An attempt (Sigmund, 1968) to extract a sim
ilar behavior from measurements of the reflected momentum (Kopitzki & Stier, 
1961, 1962) failed. One likely reason for this must be the lack of simple scaling 
properties. Therefore, studying deposited momentum as a goal in itself is not 
necessarily attractive.

With regard to the results presented in figures 3-7 (pp. 38-42) we recall that the 
assumption of E U is essential, and that deviations from asymptotic behavior 
show up for E/U < 10. The occurrence of a positive momentum profile at negative 
depths (x < 0) is indicative of a breakdown of the asymptotic picture. This was 
apparently not noticed by Roosendaal et al. (1982). Implications from this 
behavior which entered the literature subsequently (Hautala & Whitlow, 1985) 
need to be taken with caution.

8.2 Particle Flux in Bulk

Several attempts have been made to estimate anisotropic particle fluxes as well as 
energy and momentum fluxes in the literature. In this paragraph we consider bulk 
fluxes where complications due to surface discontinuities are of no or only minor 
importance. Effects of regular crystal structure are ignored.

Not all estimates address flux densities G or fluxes G| cos 0| as defined in the 
present paper. Littmark & Hofer (1980), in addressing recoil mixing, evaluated 
recoil densities, and Roosendaal et al. (1982) estimated freezing densities. 
However, within the approach chosen in those papers there should be no major 
differences between the anisotropy factors belonging to various distributions. This, 
however, ignores the existence of the gradient term which was not recognized until 
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recently (Sckerl et al., 1995). According to section 7.6 this term dominates over 
the momentum term in the limit of E W. Conversely, the estimates mentioned 
above appear significant for moderate ratios of E/W. Such ratios are relevant 
in the theory of collisional mixing, the topic addressed by Littmark & Hofer 
(1980).

Hautala & Whitlow (1985) evaluated fluxes of particles and momentum for 
argon bombardment of germanium by Monte Carlo simulation. The results are 
qualitative because of moderate statistics. Moreover, fluxes were recorded at five 
distinct depths which were kept fixed even when the incident energy was varied 
from 10 to 80 keV. Nevertheless, several features emerging from the present work 
are consistent with their findings. The graph in the upper left corner of figure 8 
may be employed as a rough illustration of 80 keV Ar ions incident on Ge. In 
agreement with the simulations we find a very low forward flux at the surface but a 
rapid change toward isotropy with increasing depth. This qualitative feature does 
not change dramatically with energy but a comparison between figures 8 and 9 
indicates a certain sensitivity to the interaction potential, a feature that emerged 
already from the simulations.

While the angular distributions shown in figures 8-10 (pp. 43-45) refer to 
fluxes differential in energy, the fluxes found in the simulations of Hautala & 
Whitlow (1985) are integrated over all energies. However, a second integral is 
given where the particle flux has been weighted by momentum and hence reflects 
a higher contribution of high-energy recoil atoms. In the language of figures 8 - 
10 this is equivalent with a lower value of E/W and, hence, a higher degree of 
anisotropy. Also here we find good qualitative agreement between simulation and 
transport theory.

8.3 Collisional Mixing

Our findings have implications on the theory of collisional mixing. It is common 
to distinguish between recoil implantation, i.e., relocation of atoms knocked on 
by primary ions, and cascade mixing dealing with the effect of higher-generation 
recoils (Littmark & Hofer, 1980; Sigmund & Gras-Marti, 1981). Here we 
deal with cascade mixing which is conventionally based upon the recoil density, i.e., 
a distribution in energy, angle, and depth of recoiling atoms in combination with a 
range-energy relation for recoils. The recoil density is closely related to the particle 
flux. Elementary theory of cascade mixing is based on the asymptotic limit of an 
isotropic velocity distribution. A term corresponding to the Z3-family is taken into 
account routinely in some codes, following the scheme outlined by Littmark & 
Hofer (1980). No allowance has hitherto been made for inclusion of a gradient 
term following from the C-family.
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The recoil density can easily be expressed by the flux density on the basis of 
the definition,

F(E, e; W, Q, a:) = N [ dW [ d2Sï' G(E, e; W, Q', x) K(W, Q'; W, Q).

The resulting expression for the recoil density is found from eq. (39) on page 23 by 
integration of the first term according to

f dW'K(W',W)
Jw>w

and the two subsequent terms according to

I dW’K(W',W)y/W/W’.
Jw>w

In practice, these expressions would have to be written up for multicomponent 
media in accordance with the scheme outlined in appendix A.

From this we readily find the conventional W~2 term in the recoil density 
(Sigmund, 1969a; 1972) as well as correction terms oc W2m~2 and oc IF-3/2 for 
the C and B family, respectively. The existence of the latter has been recognized in 
principle long ago (Sanders, 1968) and was utilized with the correct coefficients 
by Littmark & Hofer (1980). The gradient term ex W2m~2 is new. It is seen 
that for low-energy recoils, where m is small, the dependence on recoil energy W 
is very similar to that of the leading A term. In ion beam mixing, mostly the 
projected relocation depth is of interest. The most pronounced modification to the 
isotropic approximation is, therefore, a forward-backward asymmetry which may 
estimated from figures 8 - 10 on the basis of the following relationship,

^flux = P — 1 + ÖPß -I- 6Pc

^recoil = 1 + ÖPß + X Ï--- 9— ^PCi3 1- 2m
where öPß and 5Pc are defined by eq. (62). It is seen that for m = 0 the anisotropy 
in the recoil density is smaller by 33 % than that in the flux due to a smaller C cor
rection, while for m = 0.25 the two anisotropy factors are identical. Therefore, as a 
first approximation, figures 8-10 may be taken also as estimates of the anisotropy 
factor of the recoil density. Evidently, mixing profiles will be asymmetric, and 
the transition from profiles skewing outward to profiles skewing inward lies around 
(x)p - Aa?r>.

8.4 Particle Flux at Surface

The backward particle flux at a bombarded surface is measured by sputtering ex
periments. In addition to measurements of the absolute sputter yield, dependent 
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on ion energy and angle of incidence, measurements of the distribution in ejec
tion angle and/or energy are of interest in the present context. For quantitative 
comparisons with experiment it is necessary to account for surface binding. This 
is conventionally achieved by imposing a planar or, occasionally, spherical surface 
barrier. A correction for multiple crossings of the surface in an infinite medium is 
necessary in principle but has only rarely been performed in practice, but an exact 
evaluation for a solvable model has been performed by Urbassek & Vicanek 
(1988).

8.5 Sputter Yield

Disregarding the surface correction and adopting a planar potential barrier Us so 
that W > Us/cos2 Ö, we find the following expression for the sputter yield,

f(f, e)
r1 m s

2 NC
1 Fp(E, e;0)

4(1 - 2m) Us

1-m 9FD{E,e-,x)/dx\x=Q
(l-4m)(5-8m) NS(Us) 

3 F°g(E,e;0)
2(1 - 4m) yWÎÇ (65)

where the first term is identical with the one derived long ago (Sigmund, 1969b). 
The correction terms are new in this form, but the third one, which is less important 
than the second, has been invoked more or less explicitly in previous treatments 
(e.g., Matsunami et al., 1984). We note that a frequently quoted estimate of 
that term (Roosendaal & Sanders, 1980) had the wrong sign since it was based 
on the deposited momentum integrated over all space which is directed inward.

For m < 1 we may ignore the last term in the brackets of eq. (65). The 
gradient term constitutes a positive correction to the asymptotic sputter yield 
which increases toward lower beam energies. This is one likely reason for the 
good agreement between measured sputter yields and the asymptotic sputter yield 
formula (Sigmund, 1969b) when evaluated with the Thomas-Fermi stopping cross 
section which is known to fall off too slowly with decreasing beam energy. Since 
S(Us) oc t/s1-2m, the dependence of the yield on Us is hardly affected.

On the theoretical side, eq. (65) appears to accentuate the need for a proper 
surface correction since dFo/dx varies more rapidly near x = 0 than FD.

8.6 Differential Sputter Fluxes

The effect of the gradient term in the sputter flux will be visible in the distribution 
in emission angle. The energy spectrum, on the other hand, is rather insensitive 
for small values of m.
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Angular dependencies are characterized experimentally by an exponent n as 
defined by eq. (63) which may be related to the anisotropy factor P by eq. (64) 
with

L _ t- w dFo/dx
mNS{W) Fd

We note that this relation determines the flux at an emission energy W which has 
not been corrected for a planar surface barrier. Measured angular distributions 
refer typically to the flux integrated over all emission energies. Nevertheless we 
may extract a dependence of n on the ion energy E from eqs. (64) and (66). 
Since b oc E~2m° we may conclude that n approaches 1 at high beam energies 
as 1 + const x E~2m°, while it varies more slowly at lower beam energies. The 
maximum possible value of n in this description is n = 2 which, according to 
eq. (64), is reached for 2b 3, i.e., for highly anisotropic flux distributions for 
which several of our approximations would break down. However, these results are 
modified in the presence of a real surface (Waldeer & Urbassek, 1987, 1988; 
Urbassek & Vicanek, 1988).

Measurements (Andersen et al. , 1985) as well as Monte Carlo simulations 
(Hautala & Whitlow, 1985) on Ar-Ge indicate a maximum value of n ~ 1.6 
and 1.7, respectively, in the medium-keV range (~ 20 keV for the experimental 
data), i.e., ô ~ 2. This is certainly too large an anisotropy to be counted as a weak 
perturbation. Thus, while the decrease in n above the maximum may be accounted 
for, the behavior at lower energies is outside the range of validity of our description.

8.7 Isotope Effect

For an extensive review of the isotope effect in sputtering the reader is referred to 
Sigmund & Lam (1993). It was suggested some time ago that nonstoichiometric 
particle fluxes found in computer simulations of cascades in isotopic mixtures were 
related to momentum balance (Shapiro et al., 1988). Isotope effects in the 
particle flux were studied long ago (Andersen & Sigmund, 1974), and a slight 
dominance of the light isotope(s) was derived for the isotropic part, cf. eq. (58).

A more recent study by two of us addressing the H-term (Sigmund & Sckerl, 
1993) revealed two isotope dependencies, one identical with the one inherent in the 
A-term and an additional one preferring the heavier species, cf. eq. (59). The com
bined effect in the ^-contribution to the particle flux typically prefers the heavier 
species, but in view of the smallness of that contribution in comparison with the 
isotropic particle flux, this effect was considered to be rather insignificant.

Since the gradient term is at least as important a correction to the isotropic 
particle flux, the sign and magnitude of its isotope dependence is relevant in this
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context. Eq. (60) in conjunction with figure 2 indicates the C-term to be pref
erential in the heavy isotope(s). For m < 0.25, that preference is, however, less 
pronounced than in the 23-term. This implies that the conclusions drawn by two 
of us (Sigmund & Sckerl, 1993) on the significance of momentum asymmetry 
in isotope sputtering are essentially unaffected by the gradient contribution which 
was not known to us at the time.

A recent study of isotope sputtering by numerical simulation (Shulga & Sig
mund, 1995, 1996) has shown that at high ion energies, nonstoichiometric particle 
fluxes obey essentially eq. (58) as one would expect. Very pronouncedly nonsto
ichiometric sputter fluxes are found at low energies which involve primary recoil 
atoms and threshold processes. These effects are so pronounced that even though 
they decrease in importance with increasing energy, they appear to overshadow the 
ß- and ^-contributions to the particle flux at least in the case studied (Ar on Mo).

Appendix

A Polyatomic Materials
This section lists generalizations of some of the basic equations as well as results 
of the present work to polyatomic media. Unless stated otherwise definitions and 
proofs follow the same line as indicated in the main text so that the main compli
cation lies in notation.

A.l Fundamentals

The relations (3) defining deposited energy and momentum expand to

FD5.j(r,f7) = I d3wWFj(w,r,U),
Jw<u

Fp^.j(r,U) — / d3w MjwFj(w,r,U)
Jw<u

where the freezing density Fj(w,r,U) now refers to atoms of species j. Mainly 
accumulated densities of energy and momentum

Fz>(r,V) =
J

Fp(r,i7) = 
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deposited in all species are of interest, except for the considerations presented in 
appendix B34.

The fundamental relation (4) expressing the freezing density by the flux densi
ties reads

= 5? I d3 4w'Gk(w',r) f daki(w',v',v")

3Subscripts -j and i- are applied here to avoid mixing up energy/momentum deposited in 
j atoms, Fr),.j(r,U'),Fp>.j(r,U'), with energy/momentum deposited due to bombardment with 
i-atoms to be introduced below.

4 A species-dependent threshold Uj could in principle be introduced but has no function within 
the context of the present work.

k i Jw>u J

x (M(ü' - w) + - w)}, (W < F).

With this the relations (8) between deposited energy and momentum and the flux 
densities are generalized to

fd = V f dw(Gj(W)Nk [ E'dajk+GktWjNj [ E"dakj
j k Jw>u \ Je'<u Je"<u

+

where

Fp = V[ dw(Hj(W)Nk[ 
j k Jw>u \ Je

Hk(W)Nj f Mjv" cos<t>"dakj]
Je"<U )

From elastic-collision dynamics we obtain a generalization of eq. (10) for the lon
gitudinal momentum component transferred from a j-atom with energy W hitting 
a fc-atom at rest,

Mjv1 cos«// = ^(W - ßjkT)

where
Afj + Mk 

IM.
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Similarly, for a Å;-atom with energy IV hitting a j-atom at rest we have 

AW'cosø" = -ßkiT.
w

This yields

Fd =
j,k

Fp = £ [ dW^(Hi(W)NkS'jk(W,U,ßik) + Hk(W')NjS'^(W,U,ßkj
jk Jw>u w

where
S'jk(W,U,ßjk) = [ (W - ßjkT)dajk(W,T)

Jt>w-u

S'^W,U,ßkj) = ßkj [ Tdcrkj(W,T)
Jt<u

instead of eqs. (11-13).

w>u
[ dW (Gj(W')NkSjk(W, U, 1) + Gk(W)NJS^ (W, U, 1)1 

Jw>u v 7

A.2 Transport Equations

The transport equations for polyatomic media were established already in Boltz
mann’s original work (Boltzmann, 1875). The linearized versions are listed here 
only for definiteness of notation. The forward equation (17) reads

d3w"{Gj(w)Kjk(w-, w', w")Nk - Gj(jw')Kjk(w'-,w,w,'>)Nk

- Gk(w')Kkj(w'-,w"

while the backward equation (18) turns into

£W I daik(i,-,v',v"){Gij(v)-Gij(v’')-Gkj(v")\,
k J

d
+ cos Q—Gij{v) = ôijôÇv - w)ö(x). (67)

The normalization relations (21) and (22) remain valid also for deposited energy 
Fp,i- and momentum Fpj. while the transport equation reads

'V.Nt f {fd,(.(v) - Fd^v’) - FD.k(v")]daik(y-,v',v"')
k J 

d
+ COS0—T/9y.(v) = 0.
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Here, Fd,i- indicates the energy deposited in all species due to bombardment with 
an z-particle. The equation for Fp is expanded analogously.

A.3 Solutions

The flux equations eq. (67) may be transformed into Laplace space and thus form a 
generalized version of eq. (26). The resulting multidimensional system of algebraic 
equations splits into uncoupled sets of equations, one for each target species j and, 
for n — 0, one for each combination of t, — I' and p = p'. Solutions may then be 
found in accordance with the scheme outlined long ago (Andersen & Sigmund, 
1974). Pertinent terms were selected on the basis of the criteria developed in 
conjunction with tables I and II above. Explicit results quoted here refer to a 
binary medium with arbitrary masses Mi,M2 and elastic scattering. The leading 
moments in the three families then read

r-4(0)
^*1

E
4ttW2 WD'a(1) (68)

^R(O) _ 3(e-Q) l2MiE Mx + M2 MS21(VE)
(69)'■*»1 4ttW \ 2MxW 2M2 WD'b(1/2)

3WW^1) (MS21 (1V) 5"^ao(l - 2m)

+ Ar2Si2(W,)G*°’10;10(l-2m)) (70)

where 79,4(s), 7?b(s) are determinants that have been discussed previously (An
dersen & Sigmund, 1974; Sigmund & Sckerl, 1994) which in the present 
notation read

■^(s) — (^11,/ ^11,£ + ^12,(^21,£ + ^22,£ ^22,£^ ~ ^12,£^21,£

with 7 = 0,1 for 7?^, Dp, respectively, expressed in terms of macroscopic transport 
cross sections

£<*/*) = Nk y daik (1 - F/(cos</>') (1 - t)s} 

Sifc,Äs) = Nk y dcrik Pi (cos (j)")ts.

Primes in the determinants indicate derivatives with respect to s. 
The Laplace moments can be written in the form

✓"vW / \
Lzll;10;10ksJ

77(0) / X
Lr21;10;10tsJ

^21,1 (5) + ^22,1 (5) ~ ^22,1 (5) 

127tIP7?b(s)
SS.1W 

12jrlV£>E(s) ’

(71)

(72)
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From this we reconstruct the spatial distribution of the flux density of 1-atoms 
according to

Gn (£, e; IV, fi, z) = G(} + G® + G®

FDii.(E,e;x) NtSntW)
4ttW2 WD'A(1)

3 SFF0Pyi.(E,e;W,n,x) N1S2i(W)  
4ttW V2Mi PF V 2M2 J WD'B(l/2)

(73)

(74)

3(ea • Q) dFD^i\E,e- W, f2, x)
~W2D'a(F) dx

X (NiS2i(IV)Gi01).10.10(l -2m) + 7V2S12(IV)G^10;10(l - 2m)) (75)

where Fo,i-(E, e; x) is the density of deposited energy for bombardment with an 
z-particle and F°Pi.(E, e; W, F2, x) the corresponding momentum density.

The corresponding flux density of 2-atoms is found by interchanging indices. 
These results have been utilized in the evaluations reported in section 6.6.

B Conservation Laws
This section serves primarily to clarify the physical significance of some of the sta
tistical distribution functions introduced in section 2.3 and their generalizations to 
polyatomic media in appendix A. Well-known results on energy sharing are shown 
to emerge directly from conservation laws of energy and momentum in considerable 
generality.

B.l Energy Conservation

Consider first elastic collisions in a monoatomic medium. Differentiation of eq. (11) 
with respect to U yields

/ dW Ig(W)K(W,W - U) + G(W)K(W, U) - G(U)K(U, W)},

where K(E,T} — da{E,T)/dT. On the other hand, integration over Q of the 
forward equation (15) leads to

N I dW' |(7(W)K(W, W) - G(W'}K(W', W - W)

- C(W')K(W', W)} + V • H(W) = <5(W - E)ö(r).
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After elimination of the integral we find

- + v ■ (UH(U)') = ES(U - E)S(r)

which has the form of a continuity equation expressing energy conservation. Before 
discussing its significance we note first that for a polyatomic medium this relation 
expands to

- + v ■ (UH^U)) + £ {Gj(U')Nksjk(U')
k

- = 6ijE6(U - E)S(r).

We may also allow for electronic stopping by formally considering target electrons 
as being one of the species entering the År-sum. Disregarding energy transfer from 
electrons to nuclei and expressing the electronic stopping power by stopping cross 
sections of individual atoms (Bragg’s rule) we arrive at

- + V ■ (t/H, ((,')) + 52 {G^UfNkS^U)
k

- Gk(U')NjSn,kAu')} = SiiE5(U - E)å(r), (76)

where
Sik(U) = S„,jk(.U) + S^klU)

and Sn st, denote the nuclear and electronic stopping cross section, 
respectively, of a j-atom colliding with a År-atom.

The physical significance becomes most illuminating after integration over some 
arbitrary AV as well as some energy interval Ui < U < U2 < E, and use of Gauss’ 
theorem,

f/AV,^)-^(AV,C72) = f2du[-[ d2rn-(UHJ(U,r)')

Jui [ 7s(av)

where
£j(AV, Ï7) = I d3rFDij(r,U)

J AV
is the energy deposited per cascade in AV if the freezing energy is U, S(AV) is a 
closed surface surrounding AV and n a unit vector in the direction of the outward 
surface normal.
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We note first that

- dU

— dU I d2r I dt I (Fft (n • u) gj(U,Q,r,t)
Js(AV) Jo J

is the net flux of energy per cascade carried by ji-atoms out of AV with energies in 
the interval (U,dU). Here, u denotes the velocity of a particle with energy U and 
direction Q.

Next, the term
-dU ( <frGj(U,r)y'NkSik(U)

J&v t
accounts for all loss of energy from AV by nuclear and electronic collisions under
gone by J-particles with energies ([/, dU}, and

-dU [ d3rYGk(U,r)NiS„,kj(.U'l
J^v k

accounts for the corresponding gain in the form of recoil atoms.
The net result of gains and losses is the energy of those J-atoms which freeze 

at energies in the interval (Di,^) while in AV.

B.2 Momentum Conservation

A similar procedure may be applied to momentum. Differentiation of eq. (12) with 
respect to U yields

— NU [ dW /-H{W)K(W, W -U) 
oU J f w

+-H(W)K(W,W) - -H(U)K(U,W}\ . 
w u )

Now assume elastic collisions, multiply eq. (15) with Q and integrate over Q. This 
yields

NI dW {h(W)K(W, TV') - H(TV') cos 0'Æ(TV', W - TV)

- H(TV')cos</>"Æ(TV',TV)} V V-J(TV) = e 5(TV - E)5(r),

where cosø" = w/w' and cos</>' = w/w', and J = (Ja/?) denotes a symmetric tensor 
with components

= [ d2Sl SlaSløG(W, Si), a,0 = 1,2,3.
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After elimination of the integral we find

+ V ’ (y2MUJ(U)) = - E)ö(r).

For a polyatomic medium this expands to

- + v ' + E {sflVWP)
k

- Hk(U')NjTkj(U')} = - E)S(r)

with the momentum transfer cross section

2}»(IT) = y V2MkTCOS$"da]k(W,T) = Si^W'>-

B.3 Applications

The above relations allow to rederive or confirm basic results for particle fluxes 
found in our previous work (Andersen & Sigmund, 1974; Vicanek et al., 
1993; Sigmund & Sckerl, 1993) by a unified procedure. First, consider spatial 
averages only where the divergence term disappears. Eq. (76) then reduces to the 
starting point of a study of energy spectra in multicomponent targets ( Vicanek 
ET al., 1993). If, furthermore, the U dependence of Fp,i is disregarded — which 
should be justified for U E — we arrive at

E( Gi(W)NkSji,(W) - Gk(W)NjSkj(W)j = 0, 
k

a relation first mentioned by Andersen & Sigmund (1974). For a binary medium, 
this reduces to

G^W) M521(VF) 
g2(w) “ N2s12(wy

Likewise, if the U dependence of Fpj is insignificant one arrives at

E(«
k

which for a binary medium reduces to

h1n2t12 = h2n1t21,

a result found by two of us (Sigmund & Sckerl, 1993).
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